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Figure 1.  SERS hot spot maps 

showing how SM-SERS intensity 

(color bar) varies with the spatial 

origin of the signal.  From ref. 1. 
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Project summary: The goal of this project was to use novel approaches in super-resolution 

optical imaging to probe local electromagnetic field enhancements in plasmonic metal 

nanoparticles.  To that end, we have made several important contributions to this goal through 

the support provided by AFOSR.  First, we were the first group to use super-resolution optical 

imaging to map out the local electromagnetic field intensity of a single-molecule surface 

enhanced Raman scattering (SM-SERS) hot spot with <1 nm resolution.  Second, we were the 

first to provide a correlation between the size and shape of SM-SERS hot spots and the structure 

of the underlying nanoparticle.  Third, we demonstrated a unique, rapid, all-optical readout for 

the output polarization of SM-SERS nanoparticles and showed that SERS-active nanoparticle 

dimers could be discriminated from higher order aggregates without the need for separate 

structure characterization tools.  These accomplishments represent significant forward progress 

in our understanding of SM-SERS hot spots, which are well-known to be the sites with the 

strongest electromagnetic enhancement, yet remain quite difficult to fabricate in a rational 

manner. 

Accomplishment 1: Super-resolution optical imaging to map out the local electromagnetic 

field intensity of a single-molecule surface enhanced Raman scattering (SM-SERS) hot spot 

with <1 nm resolution 

1) S.M. Stranahan and K.A. Willets.  “Super-resolution Optical Imaging of Single-Molecule

SERS Hot Spots,” Nano Letters 10, 3777-3784 (2010).  (Featured in C&E News, August 30, 

2010) 

2) K.A. Willets, S.M. Stranahan, M.L. Weber.  “Shedding light

on surface-enhanced Raman scattering hot spots through single 

molecule super-resolution imaging.”  J. Phys. Chem. Lett. 3, 

1286-1294 (2012).  Journal cover art. 

We demonstrated the ability to measure the spatial origin of 

SM-SERS signals by using point spread function fitting. 

Briefly, the diffraction limited spot of a single molecule emitter 

was fit to a 2-D Gaussian function, and the emission centroid 

was recorded.  Next the average intensity as a function of 

centroid position was plotted for a time series of data to create a 

map of the SM-SERS hot spot.  Figure 1 shows examples of a 

typical SM-SERS hot mapped using this method. Several 

important conclusions emerge from these data: (1) the SERS 
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Figure 2.  (A-B) SERS hot spot maps 

overlaid on the corresponding SERS-

active nanoparticle structures.  From ref. 

3.  (C) Same as A-B but with the silver 

luminescence centroid included (white x).  

(D) Calculated average centroid positions 

for luminescence (white x) and SERS 

(red x).  From ref. 4. 

intensity changes in a directional, gradient fashion as the SERS centroid shifts away from the 

“hottest” spot and (2) the SERS hot spot extends over a region much larger than the size of a 

single molecule.  These data represent the first images of a SM-SERS active hot spot, as reported 

by a single molecule emitter within that hot spot. 

 

Accomplishment 2: Correlating the size and shape of SM-SERS hot spots with the 

structure of the underlying nanoparticle 

 

3) M.L. Weber, K.A. Willets.  “Correlated super-resolution optical and structural studies of 

surface-enhanced Raman scattering hot spots in silver colloid aggregates.”  J. Phys. Chem. Lett.  

2, 1766-1770 (2011).  (Featured in ACS Noteworthy Chemistry, August 1, 2011) 

 

4) M.L. Weber, J.P. Litz, D.J. Masiello, K.A. Willets. “Super-resolution imaging reveals a 

difference between SERS and luminescence centroids.” ACS Nano. 6, 1839-1848 (2012). 

(Highlighted in “In Nano,” ACS Nano. 6, 990-992 (2012)). 

 

To understand how the SERS spatial intensity maps are related to nanoparticle structure, 

we performed correlated optical and electron microscopy.
3,4

  Figure 2, A and B, shows two 

examples in which the SERS hot spot maps determined from super-resolution imaging are 

overlaid on the corresponding SERS-active nanoparticle structure.
3
  As above, we observe a 

region of high intensity, accompanied by a directional and gradient decay in the SERS intensity.  

In both examples, the orientation of the high intensity edge matches the alignment of a junction 

within the nanostructure, and the gradient decay in the 

SERS intensity agrees with expectations that the EM 

field enhancement decreases further from the junction.  

Thus, we find excellent qualitative agreement between 

the shape of the spatial intensity maps and the expected 

local EM enhancement of the nanoparticles. 

We also exploited the inherent luminescence 

signal from silver nanoparticles to substantiate our 

assignment of the “hot” junction.
4
  Figure 2C shows a 

SERS-active trimer with its corresponding SERS hot 

spot map overlaid on the rightmost junction.  A white 

“x” marks the position of the nanoparticle luminescence 

relative to the SERS signal.  Discrete dipole 

approximation calculations of the predicted 

luminescence and SERS centroids are shown in Figure 

2D (in collaboration with David Masiello at the 

University of Washington) and show excellent 

agreement with our experimental assignments.
4
  These 

data demonstrate that the shape and intensity distribution 

of the hot spot track with the local distribution of plasmonic enhancement on the nanoparticle 

aggregate. 

 

Accomplishment 3: a unique, rapid, all-optical readout for the output polarization of SM-

SERS nanoparticles 
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Figure 3.  (A) AFM image and 

corresponding emission patterns with 

(B) 642 nm and (C) 532 nm excitation 

for a SERS-active nanoparticle dimer.  
(D-F) and (G-I) Same as (A-C) but with 

nanoparticle trimers.  From ref. 4. 

 

4) S.M. Stranahan, E.J. Titus, K.A. Willets.  “SERS orientational imaging of silver nanoparticle 

dimers.”  J. Phys. Chem. Lett.  2, 2711–2715 (2011). 

 

5) S.M. Stranahan, E.J. Titus, K.A. Willets.  “Discriminating nanoparticle dimers from higher 

order aggregates through wavelength-dependent SERS orientational imaging.” ACS Nano. 6, 

1806-1813 (2012). 

 

Because junctions between adjacent nanoparticles are so critical for optimal SERS enhancement, 

a number of researchers have devised methods for self-assembly of dimers and higher-order 

aggregates.  However, to confirm the resulting aggregation state, structural characterization 

methods like electron microscopy or atomic force microscopy (AFM) are required, which are 

time consuming and potentially perturbative.  We have developed a simple, rapid (<2 seconds), 

all-optical method for determining the orientation and aggregation state of nanoparticles, by 

imaging the SERS signal from adsorbed tags.
4,5

 

 It is well-known that a single emitting dipole will have a characteristic emission pattern 

in the far-field, which can be imaged by defocusing the signal onto a two-dimensional detector.  

We employed a similar approach for studying SERS-

active nanoparticle dimers and found that the resulting 

image reflected the orientation of the underlying dimer, as 

shown in Figure 3, A-C.
4
  By modeling the dimer as a 

dipole based on its geometry, we found excellent 

agreement between predicted emission patterns and the 

three-dimensional dimer orientation. 

We also showed that using two different excitation 

wavelengths allowed us to discriminate dimers from 

higher order aggregates.
5
  In the case of a nanoparticle 

dimer, the emission patterns are wavelength independent 

(Figure 3, A-C), while in trimers (and higher order 

aggregates), the pattern strongly depends on excitation 

wavelength (Figure 3, D-I).  This approach allows for 

rapid identification of aggregated nanostructures in 

complex and dynamic environments where AFM and 

electron microscopy may be less useful. 

 

Additional work citing AFOSR support: 

 

K.A. Willets.  “Probing local electromagnetic field enhancements on the surface of plasmonic 

nanoparticles.”  Prog. Surf. Sci. 2012, accepted. 

 

K.A. Koen, M.L. Weber, K.M. Mayer, E. Fernandez, K.A. Willets.  “Spectrally-resolved 

polarization anisotropy of single plasmonic nanoparticles excited by total internal reflection.”  J. 

Phys. Chem. C.  116, 16198−16206 (2012). 
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